Geometry of Maurer-Cartan Elements on Complex Manifolds

نویسندگان

  • Zhuo Chen
  • Mathieu Stiénon
  • Ping Xu
چکیده

The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie algebroid theory. In particular, we extend Lichnerowicz-Poisson cohomology and Koszul-Brylinski homology to the realm of extended Poisson manifolds; we establish a sufficient criterion for these to be finite dimensional; we describe how homology and cohomology are related through the Evens-Lu-Weinstein duality module; and we describe a duality on Koszul-Brylinski homology, which generalizes the Serre duality of Dolbeault cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalences of Higher Derived Brackets

This note elaborates on Th. Voronov’s construction [V1, V2] of L∞-structures via higher derived brackets with a Maurer–Cartan element. It is shown that gauge equivalent Maurer–Cartan elements induce L∞-isomorphic structures. Applications in symplectic, Poisson and Dirac geometry are discussed.

متن کامل

Deformation Theory

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section 6 we generalize the Maurer-Cartan equation to strongly homotopy Li...

متن کامل

Preferred Parameterisations on Homogeneous Curves

This article is motivated by the theory of distinguished curves in parabolic geometries, as developed in [2]. A parabolic geometry is, by definition, modelled on a homogeneous space of the form G/P where G is a real semisimple Lie group and P is a parabolic subgroup. (There is also a complex theory which corresponds to the choices of complex G’s and P ’s with specific curvature restrictions for...

متن کامل

Deformation Theory (lecture Notes) Notes, Taken by Martin Doubek and Petr Zima, from a Course Given

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section 6 we generalize the Maurer-Cartan equation to strongly homotopy Li...

متن کامل

Academy of Sciences of the Czech Republic

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section 6 we generalize the Maurer-Cartan equation to strongly homotopy Li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009